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Statistical features of heat transfer in grid-generated 
turbulence : constant-gradient case 

By K. S. VENKATARAMANIP AND R. CHEVRAY 
Department of Mechanical Engineering, State University of New York, Stony Brook 

(Received 1 9  July 1977)  

Turbulence produced by a grid which simultaneously imparts a mean temperature 
profile varying linearly with height was investigated in a specially constructed wind 
tunnel. While the mean temperature profile is preserved downstream of the grid in 
accordance with the theory of Corrsin (1952)) the downstream evolution of the r.m.s. 
temperature fluctuation is at variance with his prediction. The reason for this dis- 
crepancy is shown to lie in the neglect of molecular diffusivity, which leads to un- 
bounded growth of the fluctuations. Along with conventional correlations and spectra, 
the filtered heat-transfer correlation is presented. About 60 yo of the heat transport is 
accomplished by the low wavenumber components having length scales equal to or 
larger than the integral scale. An intriguing feature of the present experiments is the 
presence of an inertial-convective subrange for the temperature field notwithstanding 
the low Reynolds number and the consequent absence of an inertial subrange for the 
velocity field. Experimental results show that the temperature has a positive skewness 
everywhere in contrast to the velocity components, which are symmetrically distri- 
buted. Measurements of the joint probability density function of the vertical com- 
ponent of the velocity and the temperature indicate that, while the assumption of 
joint normality is not uniformly valid, the conditional expectations nearly follow the 
normal law. Marginal and joint moments of up to fourth order are presented. Odd- 
order joint moments are clearly sensitive to the skewness of the temperature. 

1. Introduction 
The study of turbulent diffusion began with the pioneering work of Taylor (1921)) 

who studied the dispersion of fluid particles in a homogeneous turbulence with zero 
velocity. Corrsin (1952) made use of these findings to investigate the problem of an 
isotropic turbulence on which a mean temperature profile varying linearly with height 
was imposed at some planenormal to the mean flow direction. He arrivedat the remark- 
able result that the mean temperature profile continued to be linear with the same 
slope downstream of the plane where it was introduced. His theory received its first 
experimental scrutiny in the work of Wiskind (1952)) who confirmed the prediction 
about the mean temperature profile downstream of the heated grid imposing the tem- 
perature profile. Wiskind did not, however, fully examine the joint statistics of the 
velocity and temperature fields. Recently, in the course of investigating the wake of a 
cylinder in a stratified flow, Alexopoulous & Keffer (1971) repeated some of Wiskind’s 
measurements and reconfirmed the prediction about the evolution of the mean tem- 
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perature profile. Here we are interested in examining the assumptions made by 
Corrsin and their possible consequences and in furthering the experiments of Wiskind 
and Alexopoulous & Keffer, which, while providing some interesting results and a 
measure of confidence in the approach of the theory, left many related questions 
unanswered. In  particular, since any statistical approach to the problem of heat trans- 
port by the random velocity field has a t  its heart the joint probability structure of the 
velocity and temperature fields, some emphasis has been laid upon the joint prob- 
ability density functions and moments of the velocity and temperature. 

K .  X. Venkataranzani and R. Chevray 

2. Discussion of Corrsin’s theory 
Corrsin’s work on homogeneous turbulence with a linearly varying mean tempera- 

ture profile represents a significant achievement in posing a conceptually simple 
problem in turbulent transport and obtaining useful results from it. It is of interest to 
examine the assumptions made in the theory and their consequences. Corrsin (1952) 
considered the case of a distributed heat source in a given plane normal to the mean 
velocity in a non-decaying homogeneous turbulence with mean velocity = iU. The 
absolute temperature Po a t  the source plane (say x: = 0) was taken to be a linear 
function of the vertical co-ordinate z:  

From the similarity of the mean thermal wake of a line source and by making use of the 
linearity of the diffusion equation to superpose the mean temperature fields of many 
sources, Corrsin obtained in the limit of a distributed source 

dp 
dz 

T(Z,  X )  = TI + -O dz, 

which states that the mean temperature for this problem is independent of x. 
While considering the temperature fluctuations, his analysis was restricted to the 

case of zero molecular diffusivity. With this assumption, the dispersion (mean-squared 
displacement) of heat is obviously the same as that of fluid particles. He set up a 
‘reversed diffusion by continuous movements ’ in which he considered the previous 
dispersion of fluid particles which later passed through a given Eulerian location 
instead of considering the dispersion of all particles which originally passed through a 
fixed point. The validity of this approach was rigorously established by him in a later 
study (Corrsin 1972). Using Taylor’s (1921) result for the dispersion of fluid particles in 
a homogeneous turbulence, he arrived a t  

where 0’ is the r.m.s. temperature fluctuation and RwL(() is the Lagrangian ‘spatial’ 
autocorrelation coefficient defined by 

&uL(5) = (44 w(x  + O>/G. (4) 
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It can be seen from (3) that for x-+ 0 

and for 2 3 0 3  

where 

w' d p  
77 dz 

8'(x) = = - x 

(7) 

the Lagrangian integral length scale. 
Equation (6) clearly depicts the serious shortcoming of the assumption of zero 

molecular diffusivity for, according to (6), the r.m.s. temperature fluctuation will 
grow indefinitely with x. 

Using Taylor's dispersion result, the rate of heat transport by turbulence 

0 = PCp(8W) 

becomes 

which in the limit x -+ 0 gives 

and in the limit x 3 00 gives " 
(w2) dF &=-pc -=--L?, 

U dz 

(9) 

which is independent of position. However, the heat-transfer correlation coefficient, 
defined as Row = ( 0 ~ ) / 0 ' ~ ' ,  

decreases monotonically with x (owing to the monotonic increase in 8' with x), giving 
the following asymptotic values: 

(11) 

1 Row= { 0 ( X - t o o ) .  

- 1 ( X " O ) ,  

As already mentioned, the neglect of molecular diffusivity leads to an unbounded 
growth of 8' with x.  This is reflected directly in the downstream evolution of the heat- 
transfer correlation coefficient. In  fact, Corrsin remarked that molecular diffusivity 
would have to be included to obtain a non-zero asymptote for Row. When we modify the 
analysis by including the molecular diffusivity we can see qualitatively the changes in 
the results. These come about in two ways. On the one hand, the dispersion of heat is 
different from that of fluid particles, and on the other, a fluid particle does not retain the 
same value of the temperature along its trajectory since the effect of molecular diffu- 
sivity is to change it. The first aspect has been considered by Saffman (1960), Okubo 
(1967) and Chevray & Venkataramani (1977). From these studies, the total dispersion 
of heat is found to be less than the sum of the individual dispersions due to the turbu- 
lent and direct molecular diffusion processes. 
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I n  the Lagrangian description which is appropriate for this problem, the diffusion 
equation reads 

where a denotes the initial (at time t = 0, say) co-ordinates (in a fixed frame of refer- 
ence) of a fluid particle that  arrives a t  the position x at time t ,  a is the molecular 
diffusivity and J is the Jacobian of the transformation. Expanding the Jacobian 
we obtain 

a w ,  t )  
at 

ax2 a2x3 I ae ax2 a2x3 ae ax3 azx, 
aa, aa, aa, aa, aa, aa, aa, aa, aa, aa, aa, aa, 

+ - - - - - - - - - - - 

I) - [&...)+...] a2e + [ @ ( . . . I + . . .  a20 

x a{[...]+ ...}+ a{[...]+ ...}. (14) 

Equation (14) makes it clear that an evaluation of the temperature history of the fluid 
particle is immensely difficult owing to the rather awkward moments which the terms 
on the right-hand side (one of which is written explicitly) will introduce even when one 
is interested in the evolution of a low-order statistical quantity like the r.m.s. tem- 
perature fluctuation. 

On the other hand, if we consider the Eulerian diffusion equation we can reach some 
tangible conclusions. Although this equation does not lend itself to a closed-form solu- 
tion (as is well known), we can still attempt a cavalier approach and make a series of 
assumptions using physical reasoning as a guide. The equation for the mean-squared 
temperature fluctuations in the Eulerian frame of reference is 

For a steady case, the first term on the left-hand side of (15) is zero. Furthermore, when 
the mean velocity is given by 

the second term on the left side reduces to 

( 1 6 )  q. = usj, 

ua(e2yax. 

Since, as in Corrsin’s work, a mean temperature gradient exists only in the x, direction, 
the first term on the right side is 

Hence (15) can be written as 

- 2(0u,) aopx,. 
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Looking now a t  the right-hand side of (17) ,  the term @ is the production term (of 
temperature fluctuations) due to the  action of the turbulence on the mean temperature 
gradient, @ is due to the convection of O2 by turbulence, @) is the molecular diffusion 
term and @ describes the destruction of the temperature fluctuations by the action of 
the molecular diffusivity. 

We may argue that the second and third terms will be small compared with the 
production term in an approximately homogeneous temperature field. Using local 
isotropy, the last term, denoting the destruction, can be written as 

- 12a(@)/A$, 

where A, is the Corrsin microscale of the temperature fluctuations (Corrsin 1951a;  
1952). We should expect the production term to attain a constant asymptotic value as 
x1 --f co. According to ( lo) ,  which was derived under the restrictive assumption of zero 
molecular diffusivity, this is so. It then appears that the success of (10) in predicting 
the correct asymptotic behaviour despite the neglect of molecular diffusivity is due to 
the fact that the turbulent transport of heat is most efficiently carried out by the large- 
scale eddies while molecular diffusivity is most effective in smearing out the temper- 
ature differences in the small scales. Equation (10) should then lead to the correct 
behaviour since the neglected molecular diffusivity becomes of minor importance. 
Hence (17)  can be reduced to a h e a r  first-order ordinary differential equation: 

where P denotes the production term and the solution of this equation is 

The expression for P i s  taken from (8) and &is assumed to be constant. The asymptotic 
result for x1 -+ co obtained from (19) is identical with the solution obtained by treating 
P as a constant. Equation (19) shows that for large values of x1 the mean-squared 
temperature fluctuations decay with increasing xl, a result we should expect on 
physical grounds. 

A less fundament’al but nevertheless important point when comparing laboratory 
experiments with Corrsin’s theory is the assumption of a non-decaying turbulence 
field, which is obviously untenable even in the approximately homogeneous turbulence 
behind a grid. Another significant departure from the theory encountered in a lab- 
oratory simulation is that the heated grid which is the counterpart of the theory’s 
source plane introduces not only a mean temperature gradient but also temperature 
fluctuations about the mean. A fluid particle leaving the grid plane and arriving a t  any 
downstream location therefore brings with it a temperature perturbation about the 
local mean not only because the mean temperature acquired a t  the source plane is 
different from that a t  the new position which the fluid particle has reached (the process 
considered by Corrsin) but also because the fluid particle has simultaneously acquired 
a fluctuation about the mean temperature a t  the grid plane. 
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3. Experimental set-up, acquisition and processing of data 
In  order to investigate experimentally the velocity and temperature fields in a nearly 

homogeneous, grid-generated turbulence with a specified mean temperature profile in 
the vertical direction, a low-speed wind tunnel was designed and constructed and is 
described in detail by Venkataramani (1977) and Venkataramani & Chevray (1977). 
The free-stream turbulence intensity was less than 0.12 yo over the part of the test 
section where the measurements were made. The heater section of the wind tunnel 
served a dual purpose: housing the heaters and providing the turbulence-generating 
biplanar grid. This grid consisted of the horizontal heater elements and vertical metal 
rods of the same diameter. The heater elements (diameter = 8 in., heated length = 11 
in., maximum rating = 450 W; manufactured by Hotwatt, Inc.) were quartz tubes 
each containing a Nichrome filament. All the experiments reported in this investiga- 
tion were conducted using eleven heaters with a corresponding mesh length of 1.5 in. 
The test section consisted of a rectangular duct of length 8 f t  and inside dimensions 
16 in. (height) x 11 in. (width). To minimize the heat loss from the walls, fibreglass 
insuIation was wrapped around the test section. 

Simultaneous measurements of velocity and temperature were made with an analog 
instrument developed by Chevray & Tutu (1972). It comprised two hot-wire probes, 
the leading wire being operated as a resistance thermometer, providing a signal pro- 
portional to the temperature, and the second wire being operated in the constant- 
temperature mode, yielding a signal with contributions from both temperature and 
velocity. The signal from the second wire was dynamically compensated for the effects 
of the variation of fluid temperature and the consequent variation of fluid properties 
through a linearizer. A signal varying linearly with the velocity was thus generated. 
This technique was extended to the cross-wire configuration so that simultaneous and 
continuous signals for two velocity components (u and w) and the temperature were 
obtained. 

Three hot-wire sensors were used to generate simultaneously the u, w and 8 signals. 
The leading sensor, made of Wollaston wire (Pt-Rh; 10 % Rh), was mounted on to a 
standard DISA 55A32 X-probe by using a collar machined to fit the conical taper of the 
X-probe; the Wollaston wire was spot welded onto its prongs. The etched portion of 
the wire had a diameter of 0.635 pm and a typical length of the order of 2.0 mm, 
corresponding to a resistance of about 1000 R a t  room temperature. A modified (for 
use with large resistance sensors) Flow Corporation 1900-1 constant-current anemo- 
meter was used to operate this Wollaston wire as a resistance thermometer with a 
current of 120 PA. At this low current the velocity sensitivity of the wire is given by 
Wyngaard (1971) to be 0-006 'C/(m-ls) but direct measurements gave 0.009 "C/ 
(ms-l). Frequency compensation of the temperature signal was dispensed with since 
the frequency response was good up to 6.4 kHz for the worst condition of zero velocity 
(Tutu 1976). All other wires were made of tungsten (3.81 pm in diameter; 1.2 mm long) 
spot welded onto X-probes and were operated in the constant-temperature mode. 
Linearization was accomplished simultaneously with the temperature compensation 
as described by Chevray & Tutu (1972). The linearized and temperature-compensated 
signals from the constant-temperature anemometers and the signal from the constant- 
current anemometer were recorded on a magnetic tape using a Honeywell 7610 F M  
tape recorder equipped with phase lock. 
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FIGURE 1. Schematic diagram of analog-to-digital conversion. 

To obtain time-averaged mean values, a Hewlett-Packard 22 12A voltage-to- 
frequency converter (100000 pulses s-l/V) and a modified Hewlett-Packard 5330A 
preset counter with seven digits and a 100 s gate time were used to perform true 
integrations. In  order to reduce the scatter in the data, integration times of 300 s were 
found necessary. While performing the r.m.s. measurements, the d.c. voltages were 
offset, thus eliminating high pass filtering errors inherent in ax .  coupled measurements. 

One-dimensional spectra of the velocity components and the temperature were 
obtained from a Hewlett-Packard 302A wave analyser with a bandwidth of 6 He while 
time-delayed auto- and cross-correlations together with probability density functions 
of the signals were measured with a Hewlett-Packard 3721A correlator operated in the 
d.c. coupled mode. Two different methods were employed to measure the filtered 
correlation of w and 8. In  the first, two identical wave analysers set at the same centre- 
frequency were used and in the second a single wave analyser was used to measure 
separately the spectra of w+8 and w-0, from which the filtered correlation was 
computed. The tape recorder was played back 16 times faster in both cases in order to 
extend the frequency range of the wave analyser to lower values. 

Processing of most of the data was accomplished by playing back the tape recorder, 
multiplexing the signals, sampling these digital values with a computer at a constant 
rate and then writing them on a magnetic tape in the multiplexed mode. A schematic 
sketch of the set-up for the analog-to-digital conversion is shown in figure 1. The entire 
process was under the control of a PDP 15 digital computer. The played-back signals 
from the tape recorder were multiplexed by a Scientific Data Systems MR50 analog 
multiplexer and fed to an SDS CD51 controller digitizer (with 14 data bits and one 
sign bit) which performed the conversion and returned the digital values. The multi- 
plexer was controlled by the digitizer, which in turn was controlled by an SDS 7915 
analog input controller. Commands from the computer were transmitted to the input 
controller and the digital values returned by the digitizer transferred to the computer 
memory. A Digital Equipment Corporation tape drive was used for writing the numeri- 
cal values on a magnetic tape. 

In  order to avoid loss of samples during the interval between the data acquisition 
by the computer and the transfer to the tape, the software was modified to incorporate 
two buffers in the computer memory. When one of them acquired the data, the other 
performed the transfer. After the writing had been completed, the buffers were then 
interchanged and this ensured recovery of all the data. The software was written to 
handle four analog channels. Thus the two linearizer output signals, the temperature 
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signal and a periodic timing signal could be digitized simultaneously. The numbers 
were written in blocks of one-thousand, corresponding to 250 values for each of the 
channels. Owing to storage limitations of the computer and the transfer speed of the 
data, the signals had to be played back 16 times slower than the speed a t  which they 
were recorded. The real-time values of the sampling frequency and the multiplexing 
interval were 20-8 x lo3 samples s-l/channel and 4.25 ps, respectively. The upper 
acquisition frequency of this system is 10.4 kHz, which from the Nyquist criterion is 
more than adequate for our purposes. The magnetic tape containing the numerical 
values was run on a Univac Uniservo 9 tape dlQve and the information transferred to 
the core of a Univac I1 10 time-sharing digital computer for the final computations by 
the use of a fast tape-to-core transfer. For each measuring station, the total number of 
samples was typically 2 x lo8 (5 x lo5 for each of the four channels: two Iinearizer 
output signals, the temperature signal and the timing signal). 

4. Experimental results and discussion 
While the closest laboratory simulation of the theoretical concept of isotropic 

turbulence is achieved downstream of a grid, it has been well established (Grant & 
Nisbet 1957; Uberoi 1963; Uberoi & Wallis 1966; Comte-Bellot & Corrsin 1966, 1970; 
Kistler & Vrebalovich 1966) that grid turbulence does not satisfy one of the major 
requirements of isotropy, namely the equality of the kinetic energies (per unit mass) 
associated with the longitudinal and transverse components of the turbulent velocity. 
This is also true in our case as is brought out by figure 2. In this and the following 
figures x is the distance downstream of the midplane of the grid, M is the mesh length 
and z is the vertical distance from the horizontal midplane of the test section (positive 
upwards). At 43.2 mesh lengths downstream of the grid, the ratio of the r.m.8. values 
of the vertical and longitudinal components of the turbulent velocity has a nearly 
constant value of 0.861 across the height of the test section. Table 1 shows a comparison 
of this value with those of other investigators. Obviously, apart from the inhomo- 
geneity in the longitudinal direction introduced by the viscous decay, the grid turbu- 
lence departs from isotropy mainly owing to the anisotropy of the large scales. It is 
nevertheless possible to make grid turbulence isotropic with respect to the kinetic 
energies by introducing a mean strain rate. Often this is accomplished by having a 
contraction after the grid. Comte-Bellot & Corrsin (1966, 1970) used a 1-27: 1 contrac- 
tion with success while Uberoi & Wallis (1966) achieved the same result with a 1-25: 1 
contraction. Unfortunately, we could not employ this method of producing isotropy 
since the concomitant temperature fluctuations produced by the grid and perhaps also 
the mean temperature gradient would also be influenced by the secondary contraction. 
At present, there appears to be no concensus on the return of turbulence towards the 
initial anisotropy downstream of the contraction. From figure 2 it can be seen that the 
maximum variation of the r.m.s. velocities from their centre-line values is of the order 
of 4 yo, which is considerably less than the variation in the experiments of Grant & 
Nisbet for a 1 in. grid. 

Figure 3, which depicts the on-line measurements of the mean temperature profiles 
at various x / M  locations, reflects the notable success of the theory in predicting the 
mean temperature profile to be the same at  all x locations downstream of the grid. 
Measurements of the mean temperature from signals recorded at  selected stations 
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FIGURE 2. R.m.s. velocity components a t  r e / M  = 43.2. 

References d/u' or w'/u' 

1 Uberoi & Wallis (1966) 0.8452 
(without contraction after grid) 

2 Grant & Nisbet (1957) 0.8832 

3 Kistler & Vrebalovich (1966) : 

ReL = 1 . 3 3 ~  lo4 
Re, = 7 . 5 ~  lo3 
ReL = 6.53 x lo3 
Re, = 1 . 5 4 ~  lo3 

0.8122 
0.7767 
0.75 
0.7114 

4 Comte-Bellot & Corrsin (1966) 0.90-0.96 
(without contraction, biplanar grid) 

5 Present design 0.861 

TABLE 1. Comparison of the ratio of the lateral and longitudinal turbulence 
intensities in various tunnels. 

( x / M  = 1'7.7, 43.2, 49.2, 55.2) are presented in figure 4. Again, these are in conformity 
with the theory as well as with the measurement's reported previously by Wiskind 
(1962) and AIexopoulos & Keffer (1971). Although Corrsin's theory was originally for- 
mulated for a non-decaying homogeneous turbulence it nevertheless seems to work 
well for a decaying turbulence behind a grid. The probable reason is that, even in a 
decaying turbulence behind a grid, the thermal wake of a line source displays similarity 
under some restrictions usually satisfied by experiments. Moreover, the molecular 
term also obeys similarity as was indicated by Venkataramani (1977)) who used the 
similarity arguments of Tennekes & Lumley (1972, p. 223) to arrive at the conclusion 
that Corrsin's result for the mean temperature profile holds good in the experiments 
despite the presence of molecular diffusivity and decay of the turbulence field. 
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FIGURE 3. On-line measurements of mean temperature profiles. A,  x / M  = 7.0 ; , x/M = 18.1 ; 
0, x / M  = 43.6. 

It may readily be observed in figure 5 that 8’ is not uniform across the height of the 
test section but generally increases with height. This behaviour was also observed by 
Wiskind and Alexopoulos & Keffer. They dismissed the possibility that the production 
of the @ stuff (in Batchelor’s terminology: Batchelor, Howells & Townsend 1959; 
Batchelor 1959) is a function of the mean temperature level by analogy with the situa- 
tion of constant linear velocity gradient, where the production of? depends only upon 
@@and the constant velocity gradient. They put forth the argument that the flow is still 
in a developing state as regards the fine-scale structure and it is the balance of produc- 
tion, diffusion and dissipation of the @stuff which is temporarily dependent upon the 
mean temperature level. An important point pertaining to the non-uniformity of 8’ is 
that, during the process of creating the mean temperature profile, the heated grid 
simultaneously gives rise to fluctuations of the temperature about the local mean as 
was mentioned in Q 2. Although in the immediate vicinity of the grid 8’ must be roughly 
proportional to the mean F,  further downstream of the grid this 8’ distribution can be 
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FIGURE 5. R.m.6. temperature profiles. Symbols as in figure 4. 

expected to approach homogeneity in the vertical direction, chiefly through the action 
of the molecular diffusivity. This tendency is revealed in figure 5, where a t  x / M  = 49.2 
and 55.2 the 8' distribution is nearly uniform. An interesting comparison can be made 
here with the experiments on a nearly homogeneous turbulent shear flow conducted by 
Champagne, Harris & Corrsin (1970). Using an array of parallel channels with different 
resistances they produced a flow whose mean velocity varied linearly with height. 
Although they obtained a linear mean velocity profile as early as 40 channel heights, 
the turbulent velocity components displayed non-uniformity up to 102 channel 
heights. Hence the non-uniformity of 8' observed in our experiments and those of 
Wiskind and Alexopoulos & Keffer is to be expected as the conditions are somewhat 
similar to the uniform-shear case. 

Another feature of the 8' profiles is that from x / M  = 17.7 to 43.2,8' increases at all 
the vertical locations and from then on decreases. The initial increase is in accordance 
with the theory, which predicts a linear relation between @ and the Lagrangian dis- 
persion. A similar increase was present in the two earlier experimental works cited. 
As for the decrease in 8' downstream of x / M  = 43-2, a likely reason is the predominance 
of the molecular destruction of@ over the production due to the presence of the mean 
gradient, which was treated in 9 2 .  Earlier studies, however, did not show a definite 
decrease of 8' with x even up to x / M  = 172. Not all the grid geometries used were the 
same. Ours is geometrically similar (with a solidity of 0.44) to that of Mills et al. (1958) 
and Mills & Corrsin (1959), who studied the decay of the temperature field downstream 
of a uniformly heated grid. Wiskind used a grid of solidity 0.34 and Alexopoulos & 
Keffer employed a grid consisting of only horizontal heaters. Furthermore, for a 
substantial part of his work, Wiskind introduced a secondary, unheated grid a t  
x / M  = 72. This makes the task of comparison particularly difficult since it is not 
possible for the secondary grid to alter the turbulent velocity field alone without 
simultaneously affecting the fluctuating temperature field. I f  the measurements made 
with the auxiliary grid are excluded from this comparison, then we can only conclude 
that the differences in the grid geometry could be of only minor importance in deter- 
mining the trend of the downstream evolution of 8'. The test section was insulated only 
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FIGURE 6. Correlation curves. x / J f  = 43.2. 0, Res(T) ;  V, R,,(T); X , R,e(T). 

in our experiments; this however could have a significant effect only near the walls of 
the test section and therefore should not be a major source of discrepancy in the present 
context. The last and most important difference lies in the value of the mean tem- 
perature gradient, which was O.l"C/cm in our experiments as compared with 
0-25 "C/crn in Wiskind's and 0.22 "C/cm in tha t  of Alexopoulos & Keffer. As the uni- 
form mean temperature gradient lacks an inherent length scale, another criterion must 
be sought for similarity before the role of the temperature gradient can be assessed. 
Since the P6clet numbers based on the grid mesh length are of comparable magnitude 
for all three experiments (0.83 x lo4 for Wiskind, 0.59 x lo4 for Alexopoulos & Keffer, 
1.44 x 104 for the present study), it is reasonable to conclude that the relative roles of 
convection and molecular diffusion are nearly the same in all the experiments and 
hence the magnitude of the mean temperature gradient would play a crucial part in 
determining the balance of the production of 82 and its destruction by molecular 
action. Inasmuch as the mean gradient in this study was less than that in the other two 
investigations, the departure from the conditions for a uniformly heated grid must 
also be less. Clearly then, the molecular destruction term should exceed the production 
term earlier than in the other experiments. This conclusion is consistent with the 
results of the measurements. 

The normalized autocorrelations of the temperature and the vertical component of 

are shown in figure 6. The same figure also contains the normalized cross-correlation 
of w and 8, defined by 

Rw0(7) = ( ~ ( t ' )  8(t' + r))/WB. (21) 

For a given delay 7 ,  Re, and Rw, are larger than R,, except at  large values of r, when 
the normalized correlation approaches zero. Essentially then, the time scales of the 
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FIGURE 7 .  Velocity autocorrelations. I, = 15 mm, I, = 8 mm. 

temperature fluctuations and the heat-transport correlation are larger than that of the 
vertical velocity component. At Iarge values of 7, however, the correlations become 
slightly negative. Indeed this is required by the continuity equation (Batchelor 1970) 
for the w component of the velocity. The u- and w-component autocorrelations are 
compared in figure 7.  From these, it  is seen that the ratio of the integral scales is close 
to 2 as expected for isotropic turbulence. 

The one-dimensional spectra of the u and w components of the velocity at 

x / M  = 17.7, z / M  = 0 

with the heaters in the grid turned on and off are presented in figure 8. Since the 
spectrum of each component remains unchanged when the grid is heated, i t  can be 
concluded that the temperature in our experiment does not alter the dynamics of the 
flow, thus behaving as a passive attribute. Measurements of the intensities of the 
velocity components with and without heating gave rise to the same conclusion. As the 
mean temperature gradient in the present experiments is a stable one, its effect would 
be to inhibit the vertical motions provided that the gradient was strong enough to 
influence the velocity field through a buoyancy term in the momentum equation. A 
criterion for the importance of buoyancy effects is the ratio of the buoyant forces to 
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I I 

FTGURE 8. Frequency spectra of u and w with and without heating. 0, u (heat on) ; , u (cold); 
0, w (heat on); a, w (cold); +, coincident. 

the inertia forces. Taking the meash length M as a characteritic length scale, we can 
write this ratio as gMd%/dz O2 

F M ’  

which in our case is 0.18 x lo-*. This is indeed consistent with the experimental obser- 
vation with regard to the spectra. 

In  figure 9 the frequency spectrum of 0 is compared with those of u and w and in 
figure 10 the three-dimensional spectra E(k)  and E,(k) are presented. A direct differ- 
entiation procedure would lead to considerable errors since the spectra vary by several 
decades in the entire k range. Hence the equivalent logarithmic differentiation pro- 
cedure due to Uberoi (1963) was used to compute E(k)  and E,(k). The viscous dissipa- 

- 

tion rate is - 
8 = 2vsijsij, 

where 
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FIGURE 9. Spectra of u, w and 8. 0, @@IF; 0, %/G; 0, @,,,/z: 
similarly, the rate of dissipation of the temperature fluctuations by the molecular 
diffusivity, denoted by ee, is defined as 

rn 
€8 = 2u-- 

ax, axj. 

These are related to E ( k )  and E,(k) in the following manner: 

k2E(k)dk, ee = 2a (22 )  

The integrands of ( 2 2 )  are plotted in figure 11.  
A striking feature of figure 9 is that while neither of the velocity components exhibits 

a power-law relation of the kind k-8 there is a distinct region (about one decade) in 
which the temperature spectrum obeys this law. For the existence of an inertial sub- 
range in which E ( k )  N k-8, i t  is required that Re! + 1 ,  a condition which is clearly not 
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FIGURE 10. (a) Three-dimensional energy spectrum of velocity and (b)  three-dimensional 
spectrum of temperature. x / M  = 17.7, z / M  = 0. 

satisfied in our experiment as is evident from the velocity spectra. Under these circum- 
stances the apparent convective range of the temperature spectrum may be regarded 
as a mere coincidence. But this could be dismissed in view of the results of Yeh (1971) 
and Sepri (197 l) ,  which show a similar convective range for the temperature spectrum 
in a low Reynolds number turbulence produced by a uniformly heated grid. In high 
Reynolds number turbulent flows of fluids having a Prandtl number of order unity, 
the inertial and convective subranges can be expected to coexist. According to the 
classical arguments (Corrsin 1951 b;  Batchelor 1959), if a universal equilibrium exists 
and if in addition the molecular diffusivity is small enough to have negligible effect on 
a portion of the equilibrium range, then the temperature spectrum must have the 
following functional form within this subrange: 

E d 4  = f(E, %, v). (23) 
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k (m-') 

FIUURE 11. Dissipation spectra of velocity and temperature. x / M  = 17.7, z /M = 0. 

Furthermore, if the Reynolds number is so large tha t  in addition to the molecular 
diffusivity the viscosity is also unimportant for a t  least a part of the above subrange, 
then by dimensional reasoning the form of the temperature spectrum is given by 

E,(k) = A s - ~ B  k-Q, (24) 

where A is a dimensionless constant. Obviously, then, in order to have (24) we must 
assume a large Reynolds number in addition to invoking a universal-equilibrium 
hypothesis if we retain the same formal reasoning as Corrsin (19516) and Batchelor 
(1959). On the other hand, in view of the presence of a convective range and in spite of 
a low Reynolds number in three experiments, it appears that we may relax the require- 
ments for the existence of the convective range. 

Returning to figure 10, it is observed that the maximum value of E ( k )  occurs near 
k = 80m-1 and that of E,(k) near 70 m-l. These correspond to lengths of 1.25 and 1.43 
em, respectively, and are indicative of the length scales of the energy-containing eddies 
for the two fields. As would be expected, they lie between the diameter of the grid rods 
and heaters (0-95 em) and the mesh length of the grid (3.81 em). In  contrast to the 
locations of the maxima of E(k)  and EB(k) ,  those of k2E(k) and k2E,(k) are well 
separated, the former being at 1050 m-l and the latter at 760 m-l. 

The large-scale eddies are the most effective in transporting heat, momentum, etc. 
and the filtered correlation wf 0, presented in figure 12 clearly illustrates this point. 
The results obtained by the two different methods explained earlier are close to each 
other except a t  high frequencies, where the discrepancy seems to be due to noise. At 
the very low frequencies the errors may be considerable owing to small effective 
averaging times. A large part of the heat transport is contributed by the large-scale 
eddies. In  fact, up to 60 % of the transport is carried out below 100 Hz (figure 13). This 
frequency corresponds roughly to a length scale of 1.3 em, which is of the order of the 

- 

18 F L M  86 
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FIGURE 12. Filtered correlation of w and 8. z / M  = 43.2, z / M  = 0. 0, two wave analysers; 

0, single wave analyser. 
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FIGURE 13. Filtered correlation integral. z / M  = 43.2, z / M  = 0. 

integral scale of the turbulence. The location of the peak in the filtered correlation 
(figure 12) around 35 Hz corresponds to the mesh length of the grid. These measure- 
ments lend support to the argument put forward in Q 2 with regard to the success of 
Corrsin’s theory in predicting the correct asymptotic behaviour of 2. Consequently, 
as seen from figures 12 and 13, the neglect of molecular diffusivity in the context of the 
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FIQURE 14. Marginal probability density functions. A, p(u); 0, p(w); 0, p(c9); ---, normal 
distribution. 

evolution o f a  is not a serious omission as its influence is unlikely to be felt a t  such low 
frequencies. 

The marginal probability density function (pdf) p (  . ) of a random process x(t)  is an 
important quantity containing all the information for the marginal moments. The 
pdf's of u, wand 0 at x / M  = 43.2, z / M  = 0, which are typical of measurements made at  
several locations, are presented in figure 14. For ease of comparison, the variables have 
been standardized by dividing by their respective standard deviations. Also shown in 
the same figure is the pdf of a standard normal random variable given by 

p,(x) = (2n)-*exp ( - 4x2). (25)  

Several decades of experimental research in turbulence have firmly established that the 
marginal pdf's of the turbulent velocity components in a grid-generated turbulence 
are very nearly normal, as Batchelor (1970) indicated that they would be if the central 
limit theorem in some form is invoked. Isotropy would require the pdf of the velocity 
components to be symmetrical in order to satisfy invariance to arbitrary rotations. 
This, however, is not required for a scalar like temperature, so that odd-order moments 
need not be zero for an isotropic temperature field. Each of the velocity components 

18-2 
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FIGURES 15 (a,  b ) .  For legend see opposite page. 

exhibits near normality in contrast to the temperature, which is positively skewed. 
Yeh (1971) found that p(B) was also nearly normal in a uniformly heated grid turbu- 
lence. Thus the large positive skewness of the temperature is an interesting feature of 
the present experiments. 

Any statistical approach to the problem of heat transport by turbulence involves the 
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FIGURE 15. Joint pdf of w and 8 a t  z / M  = 0. 0, Ec; 0, gC. Here We and gc are the conditioned 
means. (a) x / M  = 17.7; -. .-, norinal distribution. ( b )  x / M  = 43.2. (c) x / M  = 49.2. ( d )  
x / M  = 55.2. 
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FIGURE IS. Joint pdf of w and 6' at x / M  = 49.2, z /M = - 2.0. Symbols as in figure 15. 

joint probability structure of the velocity and temperature fields in some form or 
other. However very little experimental information is currently available in this area. 
Here we are particularly interested in the joint probability density function of the 
vertical component of the velocity and the temperature. Althoughp(w, 0)  was obtained 
for several locations, only the measurements for four locations along the longitudinal 
axis of the tunnel and one location at z / M  = - 2.0 are presented here. Figures 15 (a)- 
( d )  show p(w, 0 )  for x / M  = 17.7, 43.2, 49.2 and 55.2 and z / M  = 0 and figure 16 shows 
this probability density function at x / M  = 49-2 and z/M = - 2.0. 

Among several interesting features which emerge from the equi-probability curves, 
an asymmetry can be observed about the line 0 = 0 for the axial locations. The skew- 
ness of the temperature exerts a strong influence on the joint probability density for the 
fluctuations with large amplitudes. Whereas the bounding values of w are nearly 
symmetrical for each of the curves, the positive bound for B is greater than the nega- 
tive one. Since 0 is positively skewed, large positive fluctuations (about the mean) are 
more probable than large negative fluctuations and this is directly reflected in the joint 
probability distribution. It is also apparent that this influence of the skewness de- 
creases for increasing values of p(w, O ) ,  which correspond to smaller fluctuations about 
the mean. 

One of the important conclusions we can draw from these curves is that the assump- 
tion of a joint normal pdf given by 

where p is the correlation coefficient of w and 0, is not a uniformly good approximation. 
The equi-probability contours for (26) are a family of concentric ellipses. To avoid a 
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profusion of contours in each figure and also since the deviation from a smooth ellipse 
is easy to detect from the curves, we have shown only one contour for the joint normal 
pdf with the measured value of the correlation coefficient. The most pronounced 
deviations from the joint normal ellipses occur for small values of pwB, which corres- 
pond to relatively large fluctuations (of the order of 2 or 3 standard deviations) for one 
or both the variables. As the value ofpwB increases, the contours gradually approach 
the joint normal distribution. Thus it is the large amplitude fluctuations which display 
noticeable non-normality just as in the case of the marginal distribution, where the 
skewness gets its greatest contribution from the tails of the distribution. 

Although similar joint probability measurements in a grid turbulence with a uniform 
gradient are not found in the literature, it  is helpful to compare the few available 
measurements (some made under vastly differing circumstances) with our results. In  a 
series of papers Frenkiel & Klebanoff (1965, 1967a, b, 1973) have contributed a 
wealth of information on the joint statistics of the velocity fields in grid turbulence 
and in turbulent boundary layers. In  the case of the grid turbulence they found that the 
joint probability density of the longitudinal components of the velocity at two loca- 
tions separated in the transverse direction but on the same plane normal to the mean 
flow direction clearly departed from the joint normal law. There were noticeable 
irregularities in the equi-probability curves for p = 0.005 and 0-02. In  the latest study 
(1973), the joint densities of the longitudinal velocity were presented at y/6 = 0.27 in a 
turbulent boundary layer. Instead of using two probes, Frenkiel & Klebanoff took the 
signal from a single probe and delayed it by a certain time to give the second signal, 
thus obtaining the joint density of the velocity at two different times but a t  the same 
spatial position. Comparison with similar results from a grid turbulence with approxi- 
mately the same value of the correlation coefficient showed that, while neither of the 
measured distributions followed the normal distribution exactly, the distribution for 
the grid turbulence was more symmetric and closer to the normal distribution. Use of 
the non-normal Gram-Charlier expansion proved to be more successful than the 
normal law in approximating the measured distributions. 

Recent measurements in a round heated jet (Venkataramani, Tutu & Chevray 
1975) showed that, whilep(u, v) andp(v, 0 )  were nearly normal a t  the centre-line of the 
jet, p ( u ,  0 )  was asymmetrical and even a non-normal Gram-Charlier distribution in- 
volving cumulants of up to the fourth order achieved only very little success in 
approximating p(u ,  8). Joint densities at 1 and 1-89 diameters away from the centre- 
line indicated a trend of increasing departure from normality with increasing distance 
from the axis. A striking contrast with the present results is offered by their measure- 
ments at 1.89 diameters. At this position, where the intermittency factor was 0.6, 
both p(u, v) and p(v,  0)  exhibit enormous deviations from the normal law. Interpreta- 
tion of the joint pdf results with such a high intensity of turbulence as was encountered 
at r / d  = 1.89 in the heated-jet measurementsrequires caution since rectification effects 
of the hot wires are very pronounced for cross-wire anemometry in high intensity 
turbulence (Tutu & Chevray 1975). The rectification essentially introduces bounds on 
the amplitudes in the u, v plane like those left unexplained in Ribeiro & Whitelaw 
(1975). In spite of the scatter in the data owing to intermittency and high intensity of 
the turbulence, it was clear that the assumption of joint normality was a serious mis- 
representation of the actual statistical features of the flow. 

Yeh ( 197 1 ) reported that p(u ,  8) in a uniformly heated grid turbulence was closely 
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approximated by a bivariate-normal distribution with a correlation coefficient of 
- 0.155 even though the measured value of the coefficient was - 0.1476. Among the 
various investigations just cited, Yeh’s experiments bear the closest resemblance to the 
present work. The only significant difference is the absence of a temperature gradient 
in his study. Thus it appears that the introduction of a mean temperature gradient, 
even if it  is uniform, distorts the joint statistical structure of the velocity and tem- 
perature. The close interrelation between the departure from joint normality and the 
local skewness of the temperature distribution is evident from figure 16, which shows 
pwo(w, 8) a t  z / M  = 49.2, x /M = - 2.0, where the skewness of the temperature is small 
and the joint distribution follows the normal law better than at, say, z / M  = 17.7, 
z / M  = 0. 

The conditional mean of a random variable z given that another random variable 
has taken the value y = yo is given by 

m 

E(zly = Yo) = 1 XP(XlY = yo)dz, (27) 
--OD 

where p(zly = yo) is the conditional pdf. For a bivariate-normal distribution, the con- 
ditional means are linear in the values of the conditioned variable and have slopes 
equal to p and p-1. It is a little surprising, then, that the conditional means in the 
present experiments follow this behaviour although the distributions themselves are 
not normal. The reason perhaps lies in the fact that the major contribution to the 
integral comes from the inner regions of the pwe(w, 8 )  contours, where the distribution 
is not far from the normal. For large values of the conditioned variable, however, this is 
no Ionger true and consequently the deviations from the straight lines are appreciable. 
Another interesting facet of the distributions is revealed by figures 17 (a) ,  ( b )  and (c), 
which represent the cross-sections of thel>,o(w, 8) surface formed by planes correspond- 
ing to different constant values of 8. Each of these curves representing the joint pdf 
differs from the conditional pdf of p(w/8) only by a normalization constant. The 
conditional pdf of w given 8 is remarkably close to a normal distribution. 

In  view of the well-known difficulties associated with the moment formulation, a 
new closure method is emerging. This approach yields a hierarchy of equations involv- 
ing the probability distributions (Lundgren 1967, 1972; Hill 1970; Dopazo & O’Brien 
1974; Dopazo 1975). Here the closure problem is to relate the higher-order distribu- 
tions to lower-order ones. In  order to keep the mathematical complexities a t  a tract- 
able level, a theoretically convenient approach is to invoke the normality assumption 
a t  some stage of the development. Available results indicate that this method is more 
promising than the conventional moment formulation. Lundgren (1972), for instance, 
was able to derive the Kolmogorov inertial-subrange spectrum using a closure at  the 
two-point distribution level. Also, his value of 1.29 for the Kolmogorov constant is 
remarkably close to the value of 1.44 found experimentally by Grant, Stewart & 
Moilliet (1962). Dopazo (1975), using a conditionally normal distribution, showed that 
the pdf closure could well approximate the measured marginal pdf of the temperature 
along the centre-line of a heated round jet. Our results indicate that a certain amount of 
caution is required in such closures. In  the context of grid turbulence with a uniform 
gradient, a straightforward assumption of joint normality of w and 8 can be expected 
to be valid only a t  large distances from the grid and is likely to be erroneous at  short 
distances, where the joint distribution is influenced by the presence of the gradient. 
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FIGURE 17. Joint pdf p(w ,  6 = e0). (a )  6, = - 1.185, + 1.164, - 0.7938, +0.7722. 
( b )  6, = -0.4023, +0*3807. (c) 6, = -0.01084. -, joint normal distribution. z / M  = 17.7. 

On the other hand assumption of normality for the conditional expectation seems 
justified even for short distances. 

While the marginal pdf gives an excellent first idea of the gross features of the 
distribution, the actual measurements of the moments of the distribution have a 
more direct application in various theoretical models. Obviously the odd-order 
moments are indicative of the symmetry of the distribution and since the even- 
order moments are influenced by the limiting amplitudes of the fluctuations, 
the third- and fifth-order moments of 8 across the height of the test section a t  
x / M  = 43.2 are presented in figure 18, whereas the fourth- and sixth-order 
moments appear separately in figure 19. Both @ and @ are significantly different 
from zero and have nearly identical shapes. That 3 is always positive might be 
surprising a t  first, but recalling from figure 5 that 8' is not uniform across the 
height but generally increases with increasing mean temperature, it can be expected 
on the average that a fluid particle with a large fluctuation in B is likely to come from a 
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region with a mean temperature larger than the local mean and conversely a small 
fluctuation in 8 is associated with a mean temperature less than the local mean. Thus 
a t  a given spatial position the probability of encountering large positive (greater than 
the mean) amplitudes of the temperature fluctuations is greater than that of encoun- 
tering large negative amplitudes. Therefore from this rough physical picture it follows 
that the temperature distribution must indeed have a positive skewness. This explana- 
tion amounts to a closure statement since the third moment of 8 is related to the mean 
and the variance of 8. The fourth and sixth moments of 8 in figure 19 do not exhibit a 
uniform behaviour with respect to the deviation from the normal values of 3 and 15, 
respectively. At z / M  = 0 they fall below these values and exceed them everywhere 
else. There seems to be no direct relation between the even moments and the odd 
moments in figure 18. An explanation similar to that for the skewness cannot be given 
here since an inference with regard to the specific deviation from the normal distribu- 
tion would have to be made instead of just using symmetry considerations as was 
done for83. While figure 20 gives the diagonal moments of (with i = j), figures 21 
and 22, respectively, show selected odd and even off-diagonal moments. Diagonal 
moments with i ,j  > 1 are remarkably similar to each other and calculations showed 
that they are also nearly equal to the values obtained from a joint normal relation 
with the same local value of the correlation coefficient. The value of the heat-transport 
correlation coefficient a l w ' 8 '  is nearly constant and has an average value of - 0.58. 

There is a strong relationship between the marginal odd-order moments of 8 and the 
odd-order off-diagonal joint moments. The distributions of the latter across the height 
are similar not only to each other but to 83 and as well. For p)n,,,e(w, 0 )  all these 
moments must vanish identically. P r o m s  and- it appears that, owing to a large 
contribution from the non-normal 8 in 2082, this quantity deviates from zero more than 
w28 does. Even-order off-diagonal moments are shown in figure 22. Although a simi- 
larity with the diagonal moments is observable, the resemblance shown in figure 5 is 

- 
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Parameter 

U 

AT 
dF/dz 
8' 
A" 
ReA 
7 
he 
ReM 

u'/ u 

Value 

8.16 m/s 
4.05% 
4.04 "C 
0.0994 "C/cni 
0.1633 "C 
3.02 mm 

0.19 mm 
1.57 mm 

64.4 

2.01 x 104 

TABLE 2. Flow parameters a t  x / M  = 17.7, z/iM = 0. A* and A, refer to the Taylor and Corrsin 
microscales, respectively. 7 is the Kolmogorov microscale. 

\i 0 1 2 3 4 
j\ 
0 1 0 1 - 0.05152 2.9972 

2 1 - 0.05773 1.146 -0.1376 3.764 
3 0.3018 - 0.9883 0.2808 - 2.775 0.7277 
4 3,3392 -0.7218 4.225 - 1.632 14.28 

TABLE 3. Joint moments m / w V ' i  of w and 8 a t  x / M  = 17.7, z /M = 0. 

1 0 - 0.3155 - 0.01719 - 0.8840 - 0.08535 

\i 0 1 2 3 4 
j\ 
0 1 0 1 0.04132 2.9852 

2 1 - 0.02347 1.593 0.07361 6.287 

4 2.9204 - 0.4084 6.112 - 0.2534 28.51 

TABLE 4. Joint moments Zu"Bj/wY?'j of w and 8 a t  x / M  = 43.2, z / M  = 0. 

1 0 - 0.6084 - 0.02381 - 1.715 - 0.2068 

3 0.1434 - 1.674 0.1029 - 5.586 - 0.5829 

\i 0 1 2 3 4 
j\ 
0 1 0 1 0.031 70 2.9695 
1 0 - 0.6146 0.02808 - 1.719 - 0.0007 
2 1 - 0.1075 1.636 - 0.2588 6.270 
3 0.2440 - 1.744 04084 - 5.686 1.605 
4 2.9634 - 0.9528 6.410 - 2.871 27.67 

TABLE 5. Joint moments wiBj/w'i&J of 20 and 8 a t  x / M  = 49.2, z / M  = 0. 
- 

- 
XllM u8/u'8' 
17.7 0.09581 
43-2 0.06584 
49.2 0.06475 

TABLE 6. Values of ue/zt'@ along the tunnel axis. 
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not quite as st,rong as that between the moments in figures 21 and 18. I n  common with 
all the other moments, however, they have a peak a t  z / M  = 1.67. 

It is pertinent to  remark here that the variation with z of the various marginal and 
joint moments is a reflexion of the fact that  a laboratory simulation such as that 
described in this paper departs from the ideal problem in that, while introducing a 
uniform mean temperature gradient, t,he grid simultaneously gives rise to  a non- 
uniform distribution of 8’ in the vertical direction. 

5. Concluding remarks 
When a mean temperature profile varying linearly with height is imposed in a grid- 

generated turbulence, the profile remains linear with the same slope a t  all downstream 
locations in accordance with the simple and elegant theory of Corrsin. This had also 
been previously shown by others. We observed here that the presence of the decay 
of the kinetic energy in a grid turbulence does not alter this conclusion although it was 
originally proposed for a non-decaying, homogeneous turbulence. 

A rather serious shortcoming of the theory, namely the neglect of molecular diffu- 
sion, was also investigated. While the inclusion of the molecular diffusivity does not 
affect the evolution of the mean temperature profile, it does lead to  the physically 
reasonable result that  the ‘energy ’ of the temperature fluctuations cannot increase 
indefinitely as Corrsin’s theory suggests. The present experiments also indicate this 
trend. 

Examination of the statistical structure of the velocity and temperature fields 
reveals that  the probability distribution of the temperature is everywhere positively 
skewed in contrast with those of the velocity components, which are symmetrical and 
nearly normal. This peculiar feature seems to be due to  the introduction of a gradient 
in the mean temperature a t  the grid plane, which in turn introduces inhomogeneity 
in the temperature fluctuations. The skewness in the temperature distribution is 
reflected in the joint statistical structure of the vertical velocity and temperature. I n  
this regard, the assumption of joint normality for the fields involved in the transport 
must be viewed with caution inasmuch as the departure from joint normality is con- 
siderable even in the simplest transport case considered here. On the other hand, the 
experimental results suggest that  the normality assumption for the conditional 
expectations is justified. 

We are indebted to  Professor E. E .  O’Brien and Professor A. Okubo for critical 
comments and valuable suggestions. Thanks are due to the National Science Founda- 
tion for financial support a t  the start of this study under Grant K040738.  Sup- 
port from the Direction GBnkrale & la Recherche Scientifique et Technique, while the 
senior author was a Visiting Professor a t  the Fluid Mechanics Laboratory 
of the Ecole Centrale de Lyon, is gratefully acknowledged. Some of the material 
covered in this paper was presented orally a t  the New Pork meeting of the American 
Institute of Chemical Engineers on 16 November 1977. 
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